

ROYAL PURPLE[®] HP 2-C[®] 2-CYCLE MOTOR OIL

Royal Purple[®] HP 2-C[®] is a high performance engine oil that improves performance and reduces wear in both standard and high performance 2-cycle gasoline engines.

Royal Purple HP 2-C is recommended for use in both pre-mixed and oil injected gasoline 2-cycle engines in outboard motors, motorcycles, jet skis, chain saws, etc. For cold weather oil injected applications, Royal Purple recommends its Snow 2-C.

The ashless formulation and synthetic solvency of HP 2-C keeps spark plugs and exhaust ports clean for maximum engine efficiency. HP 2-

C is formulated with Royal Purple's proprietary, synthetic Synerlec® additive technology that protects rings, bearings and cylinder walls from metal-to-metal contact and guards against scuffing, galling and welding, which can occur in severe conditions. This engine cleanliness combined with the low coefficient of friction of Royal Purple HP 2-C promotes increased horsepower and engine speed. Engines operate with greater combustion efficiency and go longer between overhauls when lubricated with HP 2-C.

Performance Advantages

- · Greater wear protection
- Greater wear protection
- · Increased horsepower
- · Superior rust / corrosion protection
- · Cooler operation and less parasitic power loss
- Ashless to minimize exhaust deposits

Typical Properties*	Method	
Viscosity	D445	
cSt @ 40°C		46
cSt @ 100°C		7.5
Viscosity Index	D2270	129
Flash Point °C (°F)	D92	116 (240)
Pour Point °C (°F)	D6892	-45 (-49)
Corrosion Test	D130	
3 hrs. @ 210 °F		1a
24 hrs. @ 210 °F		1a
Rust Test	D665	
Fresh Water		Pass
Salt Water		Pass

*Properties are typical and may vary.